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Summary

Based on different linear orders on intervals,
several approaches to discrete interval–valued
Choquet integrals are introduced and com-
pared. We also present an application to mul-
ticriteria decision making problems.
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1 INTRODUCTION

For a fixed finite universe U = {u1, . . . , un}, a fuzzy
subset F of U is given by its membership function F :
U → [0, 1] (we will not distinguish fuzzy subsets and
the corresponding membership functions notations).
For several practical purposes, especially in multicri-
teria decision making, the expected value E(F ) of F
should be introduced. The original Zadeh approach
in [11] was based on a probability measure P on U,
P (ui) = pi, and then E(F ) =

∑n
i=1 pi F (ui). More

general approach, not limited by the non–interaction
of single elements of U, is based on a fuzzy measure
m : 2U → [0, 1], m(∅) = 0, m(U) = 1, m(A) ≤ m(B)
whenever A ⊆ B ⊆ U and the Choquet integral [3, 4],

E(F ) = Cm(F ) =

=
n∑

i=1

F (uσ(i))(m(
{
uσ(i), . . . , uσ(n)

}
)−

− m(
{
uσ(i+1), . . . , uσ(n)

}
)), (1)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation
so that F (uσ(1)) ≤ F (uσ(2)) ≤ · · · ≤ F (uσ(n)), and{
uσ(n+1), uσ(n)

}
= ∅ by convention.

A further generalization of fuzzy sets into interval–
valued fuzzy sets and Atanassov’s intuitionistic fuzzy

sets (these two concepts are isomorphic and thus
we will discuss interval–valued fuzzy sets only) has
brought the necessity to introduce the expected value
also for these objects. Recall that an interval–
valued fuzzy set F is characterized by its member-
ship function F : U → J([0, 1]), where J([0, 1]) =
{[a, b]|, 0 ≤ a ≤ b ≤ 1}.
The aim of this paper is to discuss the expected value
of interval–valued fuzzy sets based on the concept of
discrete interval–valued Choquet integral.

The paper is organized as follows. In the next sec-
tion, standard approach to the discrete interval–valued
Choquet integral arising from the concept of Aumann
integral [1] is recalled. In Section 3, several alternative
approaches based on various linear orders on intervals
are proposed. In Section 4, some examples of the pro-
posed integrals and their relationships are introduced.
Finally, some concluding remarks are added.

2 STANDARD DISCRETE
INTERVAL–VALUED CHOQUET
INTEGRAL

Generalization of reals into (closed real) intervals was
forced by the development of computers (especially
rounding problems) and it has lead into the interval
arithmetics [7]. Recall, for example, that the summa-
tion in this case is given by

[a, b]+[c, d] = {x + y|x ∈ [a, b], y ∈ [c, d]} = [a+c, b+d].

A similar idea has lead Aumann [1] to introduce his
integral of set–valued functions. Both these concepts
are of the same nature as Zadeh’s extension principle
[12] is, and in the framework of Choquet integral they
appear in several works, see e.g. [6, 13]. We recall here
the discrete version of this interval–valued Choquet
integral.

Definition 1. Let F : U → J([0, 1]) be an interval–
valued fuzzy set, and m : 2U → [0, 1] a fuzzy measure.
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Choquet integral–based expectation Cm(F ) is given
by

Cm(F ) = {Cm(f)|f : U → [0, 1], f(ui) ∈ F (ui)} =
= [Cm(f∗), Cm(f∗)] , (2)

where f∗, f∗ : U → [0, 1] are given by f∗(ui) =
ai and f∗(ui) = bi, with [ai, bi] = F (ui).

Several properties of the discrete interval–valued Cho-
quet integral Cm are discussed and introduced in
[6, 13]. For example, this integral is comonotone ad-
ditive,

Cm(F + G) = Cm(F ) + Cm(G)

whenever F,G : U → J([0, 1]) are such that F (ui) +
G(ui) ⊆ [0, 1] for each ui ∈ U , and F,G are comono-
tone, i.e., (f∗(ui) − f∗(uj)) (g∗(ui) − g∗(uj)) ≥ 0 and
(f∗(ui) − f∗(uj)) (g∗(ui) − g∗(uj)) ≥ 0 for all ui, uj ∈
U .

3 ALTERNATIVE DISCRETE
INTERVAL–VALUED CHOQUET
INTEGRALS

The idea of a discrete Choquet integral Cm, see (1),
is based on a permutation σ : {1, . . . , n} → {1, . . . , n}
forcing F (uσ(1)) ≤ F (uσ(2)) ≤ · · · ≤ F (uσ(n)). This
idea can be adapted for the interval case only if there
is a linear order � on J([0, 1]). We introduce now a
class of such orders.
Lemma 1. Let A, B : [0, 1]2 → [0, 1] be
two aggregation functions [3] such that A(x, y) =
A(u, v) and B(x, y) = B(u, v) can happen only if
(x, y) = (u, v). Define a relation �A,B on J([0, 1])
by

[x, y] �A,B [u, v] whenever A(x, y) < A(u, v)

or

A(x, y) = A(u, v) and B(x, y) ≤ B(u, v).

Then �A,B is a linear order on J([0, 1]) with the min-
imal element {0} = [0, 0], and the maximal element
{1} = [1, 1].

The proof of this lemma is trivial. Note that the linear
order �A,B refines the standard partial order ≤ on
intervals, [x, y] ≤ [u, v] whenever x ≤ u and y ≤ v,
i.e., [x, y] ≤ [u, v] implies [x, y] �A,B [u, v].

Two other linear orders that can be recovered in this
way are the lexicographical ones:

[x, y] �P1 [u, v] whenever x < u or x = u and y ≤ v

and

[x, y] �P2 [u, v] whenever y < v or y = v and x ≤ u

that are obtained by taking A(x, y) = x and B(x, y) =
y, in the first case A(x, y) = y and B(x, y) = x for the
second.

Now, we can introduce discrete interval–valued (A,B)–
Choquet integrals.

Definition 2. Let F : U → J([0, 1]) be an interval–
valued fuzzy set, and m : 2U → [0, 1] a fuzzy mea-
sure. Under the constraints of Lemma 1, the (A, B)–
Choquet integral CA,B

m (F ) is given by

CA,B
m (F ) =

=
n∑

i=1

F (uσA,B(i))(m(
{
uσA,B(i), . . . , uσA,B(n)

}
)−

− m(
{
uσA,B(i+1), . . . , uσA,B(n)

}
)), (3)

where σA,B : {1, . . . , n} → {1, . . . , n} is a permuta-
tion such that F (uσA,B(1)) �A,B F (uσA,B(2)) �A,B

· · · �A,B F (uσA,B(n)).

Observe that if F (ui) = [ai, bi], i = 1, ..., n, then 3 can
be rewritten into

CA,B
m (F ) =

=

[
n∑

i=1

aσA,B(i) · (m(
{
uσA,B(i), . . . , uσA,B(n)

}
)−

− m(
{
uσA,B(i+1), . . . , uσA,B(n)

}
)),

n∑
i=1

bσA,B(i) · (m(
{
uσA,B(i), . . . , uσA,B(n)

}
)−

− m(
{
uσA,B(i+1), . . . , uσA,B(n)

}
))

]
. (4)

Remark. (i) The concept of an interval–valued
(A, B)–Choquet integral CA,B

m extends the stan-
dard discrete Choquet integral. Indeed if F : U →
J([0, 1]) is singleton–valued, i.e., F is a fuzzy sub-
set of U, then Cm(F ) = Cm(F ) = CA,B

m (F ) inde-
pendently of A, B.

(ii) Observe that for a fixed F : U → J([0, 1]) such
that f∗ and f∗ are comonotone, i.e., (f∗(ui) −
f∗(uj)) · (f∗(ui) − f∗(uj)) ≥ 0 for all ui, uj ∈ U ,
for any A, B satisfying the constraints of Lemma
1, the discrete Choquet integrals introduced in (2)
and (3) coincide, Cm(F ) = CA,B

m (F ). However,
in general the integral Cm cannot be expressed
in the form CA,B

m , since representability in terms
of the bounds of the considered intervals is not
assured.

(iii) The linear order on intuitionistic values based on
score function and accuracy function, (see Defini-
tion 1 in [8]), can be seen as a linear order �M,G

on J([0, 1]), where M is the arithmetic mean and
G is the geometric mean. Note that the above
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mentioned linear order on intuitionistic values is a
background of the discrete Choquet–like integral
introduced in [8], though the applied arithmetic
operations are different from the summation and
multiplication.

4 EXAMPLES AND
COMPARISONS

Observe first that for several couples
(A1, B1), (A2, B2), . . . , the linear orders �A1,B1 ,
�A2,B2 , . . . , may coincide. Indeed, then CA1,B1

m =
CA2,B2

m . Consider, for example �Min,Max≡�P1,P2≡
�P1,B , where P1, P2 : [0, 1]2 → [0, 1] are projections,
P1(x, y) = x, P2(x, y) = y and B : [0, 1]2 → [0, 1] is
an arbitrary cancellative aggregation function.

When considering P1 and P2, the next interesting re-
lationship can be shown.

Proposition 1. Let F : U → J([0, 1]) and a fuzzy
measure m : 2U → [0, 1] be fixed. Denote Cm(F ) =
[α, β], CP1,P2

m (F ) = [a, b], CP2,P1
m (F ) = [c, d]. Then

α = a and β = d.

4.1 AN APPLICATION TO
MULTICRITERIA DECISION
MAKING

In this section we propose an algorithm that makes
use of entropies and the concepts we have presented
to determine which is the best alternative between a
set of them following some criteria that are provided
by one or several experts. Suppose that we are given
a set of alternatives {A1, . . . , An} and a set of criteria
{x1, . . . , xk}. Then we can write the following multi-
criteria decision making (MCDM) matrix:

⎛
⎜⎜⎝

x1 . . . xk

A1 ([μA1(x1), μA1(x1)] . . . [μA1(xk), μA1(xk)]
A2 ([μA2(x1), μA2(x1)] . . . [μA2(xk), μA2(xk)]

· · · · · ·
An ([μAn(x1), μAn(x1)] . . . [μAn(xk), μAn(xk)]

⎞
⎟⎟⎠

where [μAi(xj), μAi
(xj)] denotes the degree to which

alternative Ai satisfies criterion xj . We assume that
this satisfaction is expressed in an interval-valued way.
Observe that in this way we can understand each al-
ternative as an interval-valued fuzzy set over the refer-
ential set of criteria and in such a way that each of the
intervals μ(Ai)(xj) = [μAi

(xj), μAi
(xj)] provides the

membership value of criteria xj to the interval valued
fuzzy set Ai.

The algorithm that we propose is the following.

1. Fix a linear order over the set J([0, 1]).

2. Select a fuzzy measure m over the set of criteria

{x1, . . . , xk}.
3. FOR each row i = 1, . . . , n of the MCDM decision
matrix DO

3.1 Order the elements in increasing order
{x(1), . . . , xx(k)} withe respect to their corresponding
memberships to the set Ai and using the linear order
chosen in Step 1.

3.2 Take C(Ai) = 0 and C(Ai) = 0.

3.3 FOR each j = 1, . . . k DO

3.3.1 C(Ai) = C(Ai) +
μAi

(x(j))(m({x(j), . . . , x(k)) − m({x(j+1), . . . , x(k))

3.3.2 C(Ai) = C(Ai) +
μAi(x(j)(m({x(j), . . . , x(k)) − m({x(j+1), . . . , x(k))

ENDFOR

3.4 Take C(Ai) = [C(Ai), C(Ai)].

ENDFOR

4. Choose as best alternative the one for which C(Ai)
is the largest.

Now we present specific examples to show how this
algorithm works.

Example 1. This example is taken from [10], who
based it in the previous work [5]. In this work, the
author considers a set of four alternatives and three
criteria with the following MCDM matrix:

⎛
⎜⎜⎝

x1 x2 x3

A1 ([0.45, 0.65] [0.50, 0.70] [0.20, 0.45]
A2 ([0.65, 0.75] [0.65, 0.75] [0.45, 0.85]
A3 ([0.45, 0.65] [0.45, 0.65] [0.45, 0.80]
A4 ([0.75, 0.85] [0.35, 0.80] [0.65, 0.85]

⎞
⎟⎟⎠

We will take as linear order the following one:
[a, b] �MG [c, d] if and only if a+b < c+d or a+b = c+d
and ab ≤ cd. That is, in the notations of the Section
3, we consider the linear order obtained by taking A
as the arithmetic mean and B as the geometric mean.
This order is the same as the score and accuracy based
order.

Now we need to fix the fuzzy measure over the set of
criteria that we are going to use. This is a crucial step,
and in future works we intend to carry on a deep study
on which fuzzy measures are the best fitted ones for a
given problem. In this case, we use the following easy
fuzzy measure:
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m(∅) = 0
m({x1}) = m({x2}) = m({x3}) = 1

3

m({x1, x2}) = m({x1, x3}) = m({x2, x3}) = 2
3

m({x1, x2, x3}) = 1

This m can be understood as a measure of how close
the measured set is from the total set {x1, x2, x3},
namely, how far the considered set is from the ideal
situation of fulfilling all criteria. Obviously, this is a
very course, simplified approach, and it is considered
here only to illustrate the way the algorithm works.

If we order with respect to the order �MG the rows of
the MCDM matrix, we obtain the following. For A1:

{x3, x1, x2}
For A2 we have:

{x3, x1, x2}
For A3:

{x1, x2, x3}
and finally, for A4, we arrive at:

{x2, x3, x1} .

The corresponding calculations then provide that:

C(A1) = [0.38, 0.50]
C(A2) = [0.58, 0.78]
C(A3) = [0.45, 0.70]
C(A4) = [0.58, 0.83]

So the final ordering of alternatives is A4, A2, A3, A1.
This is not the same ordering obtained in [10], since
the first and the second alternatives in that case are
interchanged. Nevertheless, this can be explained by
the fact that the approach in Ye’s work is completely
different, since it is based in the use of entropies and
correlation, whereas in our case we are only based in
aggregation function theory. Of course, here the choice
of the measure has been crucial. In this particular,
notice that our Choquet integral reduces to the arith-
metic mean of the membership intervals under consid-
eration. In fact, the use of symmetric fuzzy measures
leads to OWAs in the sense of [2]

Example 2. Let’s consider now the following MCDM
matrix, taken from [9]:

⎛
⎜⎜⎝

x1 x2 x3

A1 ([0.70, 0.70] [0.80, 0.90] [0.90, 0.90]
A2 ([0.60, 0.80] [0.80, 0.80] [0.80, 0.90]
A3 ([0.60, 0.90] [0.50, 0.90] [0.80, 0.80]
A4 ([0.40, 0.50] [0.90, 0.90] [0.40, 0.90]

⎞
⎟⎟⎠

Ordering with respect to �MG we obtain, for A1

{x1, x2, x3}; for A2, {x1, x2, x3}; for A3, {x2, x1, x3};
and for A4, {x1, x3, x2}. Let’s also consider the fuzzy
measure proposed in the same paper:

m(∅) = 0
m({x1}) = m({x2}) = 0.4 ; m({x3}) = 0.3

m({x1, x2}) = 0.6 ; m({x1, x3}) = m({x2, x3}) = 0.8
m({x1, x2, x3}) = 1 .

So if we carry on the corresponding calculations, we
arrive at:

C(A1) = [0.81, 0.86]
C(A2) = [0.76, 0.83]
C(A3) = [0.64, 0.87]
C(A4) = [0.60, 0.73]

So the final ordering of alternatives is A1, A2, A3, A4,
which is the same ordering obtained in Xu’s paper.
But if now we consider the order �P2, we have that
the ordering in each alternative is for A1 {x1, x2, x3};
for A2, {x1, x2, x3}; for A3, {x3, x2, x1}; and for A4,
{x1, x3, x2}. The calculations of the Choquet integrals
for each alternative provide:

C(A1) = [0.81, 0.86]
C(A2) = [0.76, 0.83]
C(A3) = [0.66, 0.86]
C(A4) = [0.60, 0.82]

so now we obtain the following order of alternatives
A1, A3, A2, A4. So it is clear that the order that it is
chosen determines the final ordering of alternatives.

5 CONCLUDING REMARKS

We have introduced a new concept of a discrete
interval–valued (A, B)–Choquet integral, extending
the classical concept of the discrete Choquet integral.
For further generalizations, interval–valued fuzzy mea-
sures can be considered. We have presented an appli-
cation to multicriteria decision making. We expect
several applications of our concept in multicriteria de-
cision support area, in image processing, etc.

For applications the choice of the appropriate fuzzy
measure as well as that of the linear order is a key
point. We intend to carry on an in-depth study of
what properties a fuzzy measure and a linear order
should fulfill in order to be the best fitted ones for a
given application.
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